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Abstract

Theoretical limits for the capacitance density of lateral flux
and quasi-fractal capacitors are calculated. These limits are
used to investigate the efficiency of various capacitive struc-
tures such as lateral flux and quasi-fractal structures. This
study leads to two new capacitor structures with high lateral-
field efficiency. Simulation and experimental results demon-
strate higher capacity and superior matching properties com-
pared to the standard horizontal parallel plate and previously
reported lateral-field capacitors.

I ntroduction

Capacitors are essential elements in integrated circuits.
Metal-to-metal and metal-to-poly capacitors are inevitable
when linearity and high quality factor, Q, are needed. Unfor-
tunately, these capacitors consume larger chip areas and
therefore their area efficiency is of considerable importance.
Lateral-flux and quasi-fractal capacitors have been proposed
to exploit the lateral as well as the vertical fields to increase
the capacitance per unit area [1][2][3]. Despite these
advances, it is not clear what the upper limit of capacitance
density for a given process technology is and which struc-
tures are optimum. Also the matching properties of such
capacitors need further study, as the vertical and lateral
capacitances are controlled by two different processes,
namely, deposition and lithography.

Theoretical limits for the capacitance density of any capaci-
tive structure in terms of process parameters are derived.
These theoretical upper bounds lead to two new capacitor
structures which demonstrate higher capacitance density
compared to the standard Horizontal Parallel Plate (HPP)
and previously reported lateral-flux capacitors such as inter-
digitated (a.k.a. Horizontal Bars or HB) [1] and quasi-fractal
capacitors[2]. Finally, their superior matching properties are
verified experimentally.

Capacity Limits

In this section, we will show that the capacitance of any arbi-
trary capacitive structure can be decomposed into three com-
ponents associated with three orthogonal spacial dimensions
and use this decomposition to find theoretical upper bounds
for the total capacitance of such structures.

The electrostatic energy density in a homogenous isotropic
dielectric media can be decomposed as:

u(r) = 20X = TIEM +EN +EXD] @

where r is the position vector, E is the electric field vector,
e, IS the permittivity of vacuum, €, isthe relative permittiv-
ity of the dielectric medium and E,, Ey, and E,, arethe X, y,
and z electric field components, respectively. The capaci-
tance density [F/m3] of any conductor-dielectric structure
can be calculated by integrating the energy density over the
volume. Noting that capacitor's electrical energy is
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Figure 1. Dimensions of the metal lines
Ug = CDV’ 2, the capacitance density, ¢, can be decom-

posed into three components, c,, ¢, and ¢, dueto E,, E,, and
E,, respectively, i.e.,
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where DV is the electric potential difference between the
terminals of the capacitor, dv is the differential unit of vol-
ume and vol is the volume of interest.

An upper bound for the capacitance is obtained by setting c,,
¢y and ¢, to their maximum values independently. The maxi-
mum capacitance density for each spacial direction is
obtained using a parallel plate structure normal to that direc-
tion with minimum plate spacing to achieve maximum elec-
tric field and minimum plate thickness to achieve minimum
volume at the same time. This upper bound is referred to as
Theoretical Limit 1 (TL1) and can be expressed as:

Cmax = Cx max + Cy, max + € max

= ereo[ 2 + 1 } ®
I-min(l-min + Wmin) tox(tox + tmetal)

wheret,,, and t,g5 denote the inter-layer vertical separation
and the vertical metal thickness, and L, and W, are the
minimum lateral spacing and the minimum metal width for
the process technology of choice, respectively, as shown in
Fig 1. Eq. (3) defines an upper bound for the capacitance
density of any metallic structure and can serve as areference
for comparison of various capacitive structures.

A tighter upper bound can be obtained noting that although
the horizontal and vertical parallel plate capacitor structures
have the maximum horizontal and vertical field usage,
respectively, they cannot be implemented in the same spatial
location simultaneously. Therefore, atighter upper bound for
the capacitance density of structures with rectangular bound-
aries can be obtained by maximizing the magnitude of the
vector associated with orthonormal basis formed by c,, ¢,
andc,[4],i.e,

2 2 2
Cmax, 2 = f\/cx, max + Cy, max + Cz, max (4)
which will be referred to as Theoretical Limit 2 (TL2).
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Capacitor Scaling with Minimum L ateral Spacing

To gain more insight into the effectiveness of lateral and ver-
tical field usage in metal-to-metal capacitors, the capacitance
densities of the structures shown in Fig. 2 are simulated
using a special purpose field solver using an enhanced relax-
ation agorithm [4]. The simulated structures include the
standard parallel plate, the horizontal bars (HB) [1], woven
[2], woven without vias and a quasi-fractal structure of mod-
erate dimension [2]. Different shadings are used to show the
terminals of the capacitors throughout this paper.

The simulated capacitance densities per unit volume as a
function of the minimum lateral spacing, L,;,, are plotted in
Fig. 3. Equal lateral metal spacing and thickness is assumed,
i.€., Lyin = Wipin- Both ty, and t o are also kept constant at
0.8mm. Thisisin accordance with the observation that lateral
spacings keep scaling down as lithography advances, while
the vertical dimensions do not scale at the same rate. Even
though the graph of Fig. 3 isfor a particular value of t,, and
treta, it Can be easily used for other vertical spacings
through a simple scaling as long as ty,= tyeta aNd Ly =
Whin- This property can be traced back to the scale-invari-
ance of electrostatic equations [5]. TL1 and TL2 are also
plotted in this graph. As can be seen, none of the capacitance
densities exceed either of the limits.

Two important regions can be identified in the simulation
results of Fig. 3. For large lateral spacings, i.e., Ly, » to
(right hand side of the graph), the capacitance density
reaches a plateau asthe lateral fields become inconsequential
and the capacitance is dominated by the vertical fields. As
can be seen, the HPP structure has the best performance in
this region due to its optimal usage of vertical fields.

At the other extreme, when the minimum lateral spacing is
much smaller than the vertical separation, i.e. L, «t,, (left
hand side of the graph), the capacitance densities of the |at-
eral field structures become inversely proportional to L2min
because the lateral plate spacing decreases linearly with lat-
eral shrinkage resulting in a linear increase in the capaci-
tance per plate. Also the number of plates per unit volume
grows linearly with decreasing Ly, due to smaller metal
width and spacing resulting in an inverse L,;,, dependence.
It is therefore desirable to choose a capacitor with maximum
lateral field usage as the feature sizes shrink. This will in
turn result in a capacitor with minimum vertical field usage
due to the inherent trade-off between lateral and vertical
field utilization. In other words, the lateral field usage can
only be increased by introducing dielectric regions between
metal lines in the same layer, which in turn results in loss of
the vertical component.

Maximum L ateral Field Usage Capacitive Structures

As discussed earlier, the maximization of the capacitance
density in one lateral dimension (e.g., c,) leads to the struc-
ture shown in Fig. 4a which we will refer to as Vertical Par-
allel Plates (VPP). Unlike the HB structure [1] of Fig. 2a, it
has no vertical field component and maximizes the lateral
flux by using vertical parallel-plates made out of metal strips
connected with vias that maximize the lateral area of the
plates. This difference has important implications on the
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Figure 3. Capacitance Density vs. Minimum Lateral Dimensions

capacity density and matching of VPP capacitors. The via
interconnections are an important feature of this structure, as
they increase the effective area of the lateral parallel plates.
Even if stacked vias are not supported in a process technol-
ogy, aclose approximation to this structure can be fabricated
by interleaving vias. Top metal layer which is usually thicker
and has different design rules can be used to make the con-
nection between the capacitor terminals and outside cir-
cuitry. It should aso be noted that time consuming
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electromagnetic simulations are rather unnecessary for this
structure, as its capacitance can be predicted using simple
expressions for parallel plate structures with fringing. Thisis
another major advantage of this structure, compared to the
quasi-fractal capacitors[2].

It may seem that the series resistance of the vias can increase
the losses of the capacitor significantly. Fortunately, very lit-
tle ac current flows through each vias of the VPP structure
and therefore the high via resistance is even less important.
In other words, the effective series resistance of the capacitor
is determined by the resistance of a large number of viasin
paralel. This claim is also supported through experimental
verification as will be seen shortly.

The abovementioned VPP structure maximizes the lateral
field usage in one dimension. It is possible to perform this
maximization in two dimensions using the Vertical Bars
(VB) structure shown in Fig. 4b. It consists of vertical bars
made out of metal squares and vias. The length of the barsis
limited by the number and thickness of metal layers. This
structure utilizes the electric field in both lateral dimensions
and has an even higher capacitance density than the VPP
structure. However, the series resistance of this structure is
mainly determined by the via resistance and can be high
depending on the number of metal layers and via resistance
in the process of interest. Although vias have a large series
resistance, a large number of them are used in parallel. As
the number of parallel metal bars in this structure is large,
the entire capacitor can be modeled as a parallel combination
of N series RC branches. The equivalent series resistance
and capacitance are R, = r,eN and C = N:cg, whererg
and cg are the large resistance and the small capacitance of
each small section, respectively. It can be seen that the
equivalent series resistance, R,, decreases linearly with the
total capacitance, C. A similar argument is valid for the
seriesresistance of the metal slabs. Therefore, for any capac-
itor structure what really matters is the capacitance enhance-
ment for the excess series resistance per unit area.

The choice between VPP and VB will depend on the applica-
tion. A trade-off between high quality factor of the VPP and
high capacitance density of the VB can be achieved by
extending the widths of the vertical barsin one dimension. In
the extreme case, this intermediate structure will turn into
the VPP capacitor.

The simulated capacitance densities of these two structures
vs. the minimum lateral spacing L, are also depicted in
Fig. 3 for the same set of constraints. For L, <t , the VB
and VPP attain the highest capacitance density of all the
structures, while for L., >t,, VPP and VB continuously
degrade due to the lack of any vertical field component. The-
oretical limits such as TL2 can be used as a means of effi-
ciency comparison. For instance, for L, «t,,, VB and VPP
achieve a remarkable 90% and 60% capacitance efficiency
compared to TL2. In contrast, the quasi-fractal structure of
Fig. 2d achieves only an efficiency of 20%.

Matching properties of capacitors are of great importance in
applications such as A/D and D/A converters [6][7] and
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Figure 4. High Efficient-Lateral Field Structures

poly-phase filters [8]. Noting that lithography usually has
much better accuracy and repeatability than the dielectric
deposition across the wafer, we expect capacitors solely
using lateral fields to demonstrate better matching properties
than the structures using a combination of lateral and vertical
fields or just the vertical field. In practice, VPP structures
show an order of magnitude improvement in their matching
across the wafer and from wafer to wafer compared to stan-
dard parallel plate structures as shown in the experimental
results.

Experimental Results

A three metal layer CMOS technology with Ly, = 0.5nm,
Wipin = 0.5mm, tg, = 0.95mm and tyetg = 0.63nmis used to
fabricate the VPP, HB and HPP structures that occupy a die
areaof 0.12mm?, 0.33mm? and 0.19mn?, respectively. Fig. 6
depicts the high-frequency one-port measurements of these
structures while the performance numbers for these struc-
tures are summarized in Table 1. As can be seen, the VPP
structure not only achieves a factor of 4.4 and 1.6 improve-
ment in capacitance density over the standard HPP and HB,
respectively, but also for equal capacitance values will have
higher self-resonance frequency, based on either of the two
scaling methods shown in the table. To investigate the abso-
lute accuracy and matching properties of VPP, capacitance
measurements were performed on two quarters of two differ-
ent 8-inch wafers, where each quarter wafer has eleven
usable test sites on it. The relative capacitance variations of
the VPP, HB and HPP are shown in Fig. 7 while the mea-
sured and statistical results are also summarized in Table 1.
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Table 1. Measurement Results

i ; a b
Cap. | P DSy Ave(Cayg)| St Dfi/- Se |t [cHg| Q fres (fixed L) fres(scaled L) | ooy
© [fFim?] | [pF] | (SIIFF]| Cype @ 1GHz| (C=6.94pF) [GHZ| (C=6.94pF) [GHZ]
VPP | 1583 1809 | 103 | 00054 365 145 6.0 9.00 057
HB 1015 385 | 315 | 00004 11 86 242 531 0.55
HPP 3.8 6904 | 427 | 00615 60 21 6.0 6.0 11

a Normalized self-resonance frequency calculated for a capacitance of 6.94pF (the value of the HPP) assuming that only the capacitor changes and that the inductor does not scale.
b. Normalized self-resonance frequency calculated for a capacitance of 6.94pF (the value of the HPP) scaling both the capacitor and the inductor with size.

It can easily be seen that the relative capacitance accuracy of
VPP is approximately an order of magnitude better than the
conventional HPP. Comparison of the measurements on two
different wafers also shows that wafer-to-wafer capacitance
variations also improved significantly due to better repeat-
ability of the lithography. Finally the chip photo is shown in
Fig. 8.

Conclusions

A new theoretical framework which shows the capacity lim-
its of different capacitor structures is presented in this work.
This new framework can be used to evaluate the perfor-
mance of the existing capacitive structures and leads to new
capacitor structures achieving a factor of 4.4 increase in the
capacitance densities. In addition to higher capacitance den-
sity, purely lateral structures demonstrate an order of magni-
tude better matching than the parallel plate structures
implemented on the same wafer, while offering comparable
or better self-resonance frequency and series resistance.
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Figure 7. Capacitance Distribution

Figure 8. Die Photo of the HB, VPP and HPP structures
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