Capacity Limits and Matching Properties of Integrated Capacitors

R. Aparicio and A. Hajimiri

Theoretical limits for the capacitance density of integrated capacitors with combined lateral and vertical field components are derived. These limits are used to investigate the efficiency of various capacitive structures such as lateral flux and quasifractal capacitors. This study leads to two new capacitor structures with high lateral-field efficiencies. These new capacitors demonstrate larger capacities, superior matching properties, tighter tolerances, and higher self-resonance frequencies than the standard horizontal parallel plate and previously reported lateral-field capacitors, while maintaining comparable quality factors. These superior qualities are verified by simulation and experimental results.